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Abstract—There is a strong motivation to develop versatile learning paradigm for improved deployability to domain and task shifts. To
this end, we propose a novel deployable multi-domain paradigm where a vendor prepares a foresighted multi-domain network (MDN)
by training on proprietary multi-domain datasets. In the absence of data-exchange, only the network is shipped to a client. The client
intends to deploy the model for a variety of inductive-transductive tasks. Here, the generalizability-focused vendor develops an effective
learning technique to enable maximal retention of the rich transductive-inductive knowledge. Whereas, the extensibility-focused client
aims to leverage the full capability of MDN for a given task in hand. We formally define the paradigm with theoretical insights towards
developing an efficient MDN. It turns out that an MDN that advocates to retain both domain-generic and domain-specific knowledge is
a better alternative over a domain-invariant MDN. Next, we develop client-side learning strategies that are tailored to leverage the most
out of the vendor-provided MDN. Experiments reveal our state-of-the-art performance on standard benchmarks for transfer learning,
domain adaptation and domain generalization problems. Our baseline comparisons demonstrate that beyond simple addition of
multi-domain data, an effective MDN framework plays significant role in improving the final deployment performance.

Index Terms—Multi-Domain Learning, Unsupervised Domain Adaptation, Transfer Learning
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1 INTRODUCTION

T HERE has been an increase in interest to develop general-
purpose frameworks that can be easily extended to solve a

variety of image understanding problems [1], [2], [3]. This is
beyond the general trend to learn independent, non-extendable
models which are meant to solve specific challenges encountered
during model deployment. Benchmarking such frameworks in-
volves analyzing the model’s effectiveness along two prominent
aspects, i.e., generalizability and extensibility (see Fig. 1A). Here,
better generalizability implies learning of better feature represen-
tations to support future extensions and extensibility refers to the
effectiveness of the transfer learning algorithm in leveraging the
full potential of the generic model for downstream tasks.

Broadly, generalizability is of two types, transductive-
generalizability and inductive-generalizability. Transductive (or
domain) generalizability refers to the extent of input distributional
coverage within which the model’s predictions are considered to
be robust. Input samples beyond this coverage are termed as out-
of-distribution data. Similarly, inductive (or task) generalizability
refers to the extent of support exhibited by the learned inductive
bias for diverse task-shift scenarios. Thus, generalizability can be
improved by exposing the model to a wide range of tasks and
data-domains, with an intent to cover the unknown deployment
scenarios. On the other hand, extensibility refers to effectiveness of
the learning algorithm to leverage the capability of the generalized
model to work well on novel deployment scenarios (change in out-
put task or input domain). Similar to generalizability, extensibility
can be broadly discussed under, a) extensibility to task-shifts and
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Fig. 1. A. In the proposed deployable paradigm, the vendor incorpo-
rates generalizability by utilizing multiple ImageNet variants. The client
develops learning techniques with greater extensibility to deploy it for
a variety of inductive-transductive tasks. B. In literature, multi-domain
learning (MDL) works focus on generalizability while DA and transfer
learning works focus on extensibility. Our unified framework supports
both traits, yielding superior performance across task and domain shifts.

b) extensibility to domain-shifts.
In literature, we observe two lines of research which separately

cater to generalizability and extensibility. This is conceptually
illustrated in Fig. 1B along with characteristic comparisons in
Table 1. The works under the umbrella of Multi-Domain Learning
(MDL) [4], [5], [6], [7] aim to improve the generalizability (Table
1D, X-axis of Fig. 1B) by realizing a model with minimal risk on
a group of datasets (meta-training sets) drawn from distinct distri-
butions. The MDL evaluation is done on a meta-test dataset which
includes labeled support set and unlabeled query set. However,
both support and query samples are from the same domain. On
the other hand, an equivalent scenario in domain adaptation (DA)
involves a labeled source (equivalent to the support set) and an
unlabeled target (equivalent to the query set). Note that, support-
query domain-shift is the key difference between DA and MDL
evaluation (Table 1B). Since MDL works test on few-shot settings,
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Fig. 2. MDN extends to various domain and task shift problems enabled
via the proposed techniques; ITT, SST, MST and TA. Here, ITT extends
MDN to solve TL [9]. SST followed by TA extends MDN to solve SSDA [10]
problems. Similarly, MST followed by TA extends it to solve MSDA [11].
Just MST also solves a DG [12] problem.

there has been limited progress in developing effective extensible
DA algorithms that build on top of the generalizable MDL setups
(Table 1E).

On the other side, the works under the umbrella of Domain
Adaptation (DA) and Transfer Learning (TL) exclusively focus on
improving extensibility (Table 1E, Y-axis of Fig. 1B) via effective
learning algorithms. However, they usually build on a vanilla
ImageNet-pretrained base-model that exhibit low generalizability
compared to an MDL base-model (Table 1D). We observe that
a trivial extension of such extensible algorithms on top of MDL
works is unable to leverage the full potential of the generalizabil-
ity, leading to sub-optimal performance. To the best of our knowl-
edge, no prior method collectively addresses both generalizability
and extensibility. We believe a suitable marriage between these
two broad directions can lead to a unified framework supporting
both valuable traits.

Towards a unified framework, we ask ourselves, what could
be a practical setup for extensible MDL? To this end, we propose
a novel deployable multi-domain paradigm under a vendor-client
setup [8]. Here, the vendor has access to large-scale proprietary
data and thus can prepare a multi-domain network (MDN) by
employing an effective MDL algorithm. In a privacy preserving
paradigm, only the network is shipped to the client without the
rich and memory-intensive multi-domain data. The client intends
to deploy the network for a variety of inductive-transductive
problems such as transfer learning, single-source domain adap-
tation, multi-source domain adaptation, etc. In a cooperative
setup, both vendor and client are equally responsible to improve
the network’s performance on the final deployment-related task.
Here, the vendor’s objective would be to configure a setup that
can improve the network’s generalizability in the absence of
any knowledge of deployment-side requirements. Similarly, the
client’s objective would be to develop learning techniques, with
improved extensibility, that are well tailored to leverage the most
out of the vendor-provided MDN.

Next, we intuitively discuss the learning strategies in the
proposed deployable multi-domain paradigm.

a) Vendor-side generalizability. Here, the primary require-
ment is to get hold of a labeled, large-scale, multi-domain dataset.
In the context of object recognition, the multi-domain data must

TABLE 1
Characteristic comparisons of prior multi-domain learning (MDL),

domain adaptation (DA) and transfer learning (TL) works.

MDL DA TL Ours

Pre-training
protocol

A. Task and domain shift
b/w Prototype domain

and Source domain
✓ ✓ ✓ ✓

Evaluation
protocol

B. Support-query
(Source-target)
domain-shift

✗ ✓ ✗ ✓

C. Support-query
(Source-target)

task-shift
✗ ✗ ✓ ✓

D. Generalizability focused ✓ ✗ ✗ ✓

E. Extensibility focused ✗ ✓ ✓ ✓

cover a wide range of variations in visual stimulus that one may
encounter in everyday life. To capture such domain diversity,
we resort to large-scale ImageNet-variants (termed prototype-
domains) as shown in Fig. 1. Next, we focus on developing an effi-
cient multi-domain representation learning procedure while main-
taining a suitable balance between domain-generic and domain-
specific representations. We call the resulting model as Multi-
Domain Network (MDN).

b) Client-side extensibility. Here, the primary goal is to
demonstrate wide applicability of MDN for deployment-related
problems such as a) transfer learning (TL), b) single-source
domain adaptation (SSDA), c) domain generalization (DG), and
d) multi-source domain adaptation (MSDA). To this end, we
propose novel learning techniques that can effectively utilize the
multi-head nature of MDN. Broadly, we introduce the following
learning strategies (see Fig. 2), a) inductive task transfer (ITT)
b) single-source transfer (SST), c) multi-source transfer (MST), d)
target adaptation (TA). We pay special attention to leverage the
head-specificity of MDN thereby facilitating seamless extensibility,
involving minimal training and parameter update.

Our prime contributions are as follows:
• To the best of our knowledge, we are the first to collectively

address both generalizability and extensibility in a unified
framework. To this end, we formally define a deployable
multi-domain paradigm with theoretical insights towards de-
veloping an efficient multi-domain network, MDN.

• Alongside an effective vendor-side strategy, we develop
client-side strategies that are well tailored to leverage the
most out of the vendor-provided MDN. For extending to multi-
source scenarios (i.e. MST) we formulate a novel instance-to-
head affinity which respects the head-specificity of MDN while
disregarding the domain-label of the task-specific multi-
source dataset. We also utilize the head-specificity to guide
the self-training for target adaptation (i.e. TA) through a novel
multi-head-unanimity strategy.

• We thoroughly evaluate our approach against prior works
and demonstrate that an effective MDN framework achieves
significant improvements over competitive baselines even
while utilizing the same multi-domain data. We outperform
comparable prior arts on standard benchmarks under domain-
shift, i.e. SSDA, MSDA, DG, and under task-shift, i.e. TL.

2 RELATED WORK

We summarize and compare the characteristics of related works
in multi-domain learning (MDL), domain adaptation (DA) and
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transfer learning (TL) with our proposed MDN in Table 1.
Inductive transfer learning. ImageNet trained models have had
remarkable success in transferring to downstream tasks [13], [14],
[15], [16]. Multiple studies [17], [18], [19], [20] attempt to decode
the underlying factors that lead to better extensibility. It is widely
accepted that transfer learning performance decreases with the
increase in domain [20] and task disparity [19]. Recent works
show the effectiveness of removing the source-bias by learning
adversarially-robust [9] models for transfer learning.
DG and MSDA. Recent DG methods [21], [22], [23] employ well
explored distribution alignment techniques to learn useful domain-
invariant features. Certain DG methods borrow techniques used
in self-supervised approaches, such as data-augmentation [24],
[25] and other training strategies [12]. Certain approaches focus
on decomposing domain generalization into domain-specific and
domain-invariant components [26], [27], [28]. Meta-learning
techniques have also been applied as a solution for DG [26], [29],
[30], [31]. Unlike in DG, MSDA considers access to target domain
samples for a simultaneous training on both source and target.
Several MSDA works [11], [32], [33] draw motivations from the
alignment process employed in single-source DA and extend it for
all possible source-target pairs.
Multi-domain learning. Multi-domain learning refers to learning
universal representations [3] that can support consistent perfor-
mance across a range of visual domains. [34] and [35] learn
independent models for each domain and then learn to retrieve
or mix relevant models for a new task in order to learn a universal
representation. Partially-shared architectures have also shown to
suit well for this task. [3], [36], [37] and [38] propose to train a
single network to learn classification task in presence of multiple
distinct domains. Along with a shared CNN backbone with univer-
sal parameters, these networks contain domain-specific modules to
store domain-specific information using feature-wise linear units
[37], light-weight residual adapters [36], [38] and normalization
layers [3]. Alternatively, [39] uses conditional batch-normalization
instead of learning domain-specific network parameters. Different
from these, we encourage explicit specificity by incorporating
OOD detection objective for each domain-specific head training.

3 APPROACH

Our prime objective is to realize a general purpose multi-domain
feature learning framework followed by developing learning
strategies to demonstrate its extensibility.

3.1 Background and motivation

3.1.1 Notations and problem formulation
We introduce notations to describe the proposed learning setup.
a) Vendor-side prototype domains. We assume access to a set
of large-scale prototype domains denoted by {Bm}Mm=1. Each
domain Bm is associated with probability distribution µm which is
a measure over X×Y . Here, X and Y denote the input and output
space respectively. b) Client-side data domains. Let S and T be
the source and target domains characterized by the distributions p
and q respectively. Here, p and q are defined over X×Y .

Assumptions. We assume that the marginals µm(y|x) ̸=
p(y|x). Implying, there exist an unknown output task-shift (non-
matching labels) between the vendor and client side data. Further,
µm(x) ̸= p(x) ̸= q(x), implying existence of domain-shift

between the input domains Bm, S , and T . However, we consider
p(y|x) = q(y|x) implying the client-side source and target follow
the closed-set domain adaptation setting. In case of single-source
adaptation, we consider M number of labeled prototype-domain
datasets with a single labeled source and an unlabeled target.

3.1.2 Multi-domain learning paradigm
Here, the objective is to utilize the knowledge from all the
domains (i.e., via concurrent access to {Bm}Mm=1, S , and T )
in order to realize a hypothesis h with a small target error, i.e.,
h∗ = argminh∈H ϵq(h). Here,

ϵq(h) = E
q(x,y)

[ℓ(h(x), y)] where h ∈ Aα∗
(Bα

∗
,S, T ) ⊂ H (1)

Here, ℓ is the loss and H denotes the hypothesis space. And,
Bα∗

is defined by the distribution µα∗
=

∑M
m=1 α

∗
[m]µm with

α∗ ∈ ∆={(α∗
[m])

M
m=1 : α∗

[m]∈ [0, 1] and
∑M

m=1 α
∗
[m]=1}. In

other words, µα∗
is a convex combination of the prototype domain

distributions {µm}Mm=1. Here, Aα∗
(Bα∗

,S, T ) (or in short, Aα∗
)

⊂H can be interpreted as a hypothesis subspace characterized by
the best α∗ with concurrent access to {Bm}Mm=1, S and T , i.e.,

α∗∈∆ and α∗=argmin
α

(argmin
h∈Aα

ϵq(h)) (2)

Objective. For the lth source-target pair (Sl, Tl) there exists
a particular α∗

l such that ϵq(h ∈ Aα∗
l ) ≤ ϵq(h ∈ Aα), ∀ α ∈

∆. However, it is not practical to perform an optimization over
the larger hypothesis space Aα(Bα,Sl, Tl), ∀α ∈∆ to find the
optimal α∗

l for every encounter of a new source-target pair. Thus,
we propose the deployable multi-domain learning paradigm.

3.2 Deployable multi-domain learning paradigm
The prime objective of this work is to realize a deployment
friendly paradigm that is naturally viable for a privacy preserving
setting i.e., in the absence of data sharing between the vendor and
client. To this end, we formalize the following paradigm.

Definition 1. (Deployable multi-domain paradigm) Consider a
vendor with access to labeled datasets from M prototype domains
{Bm}Mm=1 and a client with an adaptation problem while having
access to a dataset pair (Sl, Tl) i.e., a labeled source Sl and
an unlabeled target Tl. In the deployable paradigm, the vendor
prepares a foresighted model with a union of limited (K number
of) hypothesis supports H̃=∪Kk=1Aαk(Bαk , ., .);αk∈∆ without
any knowledge about (Sl, Tl). This model is later shipped to the
client for adaptation in the absence of any data sharing.

Note that, the target error in a deployable paradigm is always
lower bounded by the non-deployable counterpart (obtaining Aα∗

l

with concurrent access to {Bm}Mm=1, S and T ), i.e.,

ϵq(h ∈ Aα∗
l ) ≤ ϵq(h ∈ H̃) (3)

The proposed paradigm has two important traits. Firstly, it
restricts data-exchange between the two parties ensuring copyright
and privacy compliance requirements. Secondly, the paradigm
allows the vendor to prepare a single model to be shared across
multiple clients to be deployed for various tasks (i.e., SSDA,
MSDA, DG, TL, etc.).

Definition 2. (Multi-domain extensibility criterion) The fore-
sighted vendor model with a limited hypothesis support, H̃ =
∪Kk=1Aαk ; αk ∈∆, is termed extensible for a given client-side
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source-target pair, (Sl, Tl) if with at least (1 − δ) probability
ϵq(h ∈ H̃) does not exceed ϵq(h ∈ Aα∗

l ) by more than ζ , i.e.,

P[ϵq(h ∈ H̃) ≤ ϵq(h ∈ Aα∗
l ) + ζ] ≥ 1− δ (4)

Here, the probability P is computed over a given client-side
source-target pair (Sl, Tl). According to the above definition, the
vendor’s prime objective is to construct a model with the best
possible H̃ which can support a wide variety of unknown client-
side scenarios within the generalizability bounds. With this intent,
we introduce the following configurations that are later analyzed
to build a reasonably good vendor-side model.

3.2.1 Empirical risk minimization (ERM) baseline
A straightforward approach would be to prepare a vendor-model
with H̃g=A

αg
g where αg,[m]=1/M i.e., with a single hypothesis

support head Aαg
g , implying K = 1. We denote this by ERM [40]

as it aims to learn a domain-generic representation for all the
prototype-domains. The inequality in Eq. 3 can be restated as,

ϵq(h ∈ Aα∗
l ) ≤ ϵq(h ∈ H̃g) where H̃g=Aαg

g (5)

For a conceptual illustration, in Fig. 3, the ERM support is the
most suitable for the client-side source-target pair of Scenario-1,
as it is the closest among other supports.

3.2.2 Prototype-specific (PS) baseline
Consider a scenario where input distribution of Tl matches with
one of the prototype domains Bm′ instead of being entirely
unique i.e., q(x) ≈ µm′(x). Here, a vendor model specific to
the prototype m′ would perform better than the ERM-baseline
discussed above. However, we can not generalize it for any
client-side (Sl, Tl). Motivated by this, the hypothesis support for
domain-specific baseline is formalized as H̃PS=∪Kk=1A

αk
PS where

αk,[m] =1 if m= k, 0 otherwise. Implying, K =M number of
support heads. The inequality in Eq. 3 can be expressed as,

ϵq(h ∈ Aα∗
l ) ≤ ϵq(h ∈ H̃PS) where H̃PS=∪Kk=1A

αk
PS (6)

For a conceptual illustration, in Fig. 3, one of the PS supports
(Aαk1

PS ) is the most suitable for the client-side source-target pair of
Scenario-2, as it is the closest among other supports.

3.2.3 Specific+generic (SG) MDL
According to the above discussion, the client-side task would per-
form well on one of the above two baselines. Thus, the best multi-
domain network (MDN) should encapsulate both domain-generic
and domain-specific prototype representations. Motivated by this,
the hypothesis support for specific+generic MDN is formalized as
H̃SG = (∪Mm=1A

αm
PS ) ∪ Aαg

g = H̃PS ∪ H̃g where K = M + 1
implies M + 1 number of support heads.

For a conceptual illustration, in Fig. 3, one of the SG supports
(Aαk3

PS ) is the most suitable for the client-side source-target pair of
Scenario-3, as it is the closest among other supports.

We summarize the analysis in the following result.

Result 1. For any client-side source-target pair (Sl, Tl) and the
above defined vendor-side hypothesis support spaces (i.e., H̃g ,
H̃PS, and H̃SG) the target loss is upper bounded as follows,

ϵq(h∈Aα∗
l) ≤ ϵq(h∈H̃SG) = min(ϵq(h∈H̃PS), ϵq(h∈H̃g))

(7)
From the above analysis, we infer that SG is equipped to rea-

sonably support a wide range of target scenarios. The architecture
(Sec. 3.3.2) and learning strategy (Sec. 3.3.3) of the proposed
multi-domain network follows the above discussed proposition.

Varied 
client-side 
scenarios

Vendor-side 
prototype 
domains

Client-side 
source-target 
domain pairs

Optimal 
hypothesis 

support

Deployable 
hypothesis support 
ERM PS SG

Scenario-1
Scenario-2
Scenario-3
Scenario-4

Deployable hypothesis support 

Optimal hypothesis support 

Fig. 3. An illustration of the hypothesis subspaces. The tick and cross
marks for different scenarios denote suitability of the corresponding
vendor-side configuration (i.e., ERM, PS, and SG). Note that, SG is
equipped to reasonably support for a wide range of deployable scenar-
ios while strictly ensuring the copyright and privacy compliance.

3.3 Preparing Prototypical Multi-Domain Network

We introduce a Multi-Domain Network (MDN) to facilitate learning
of general purpose representations which would be suitable for a
wide range of deployment scenarios. To this end, we pay special
attention to the following three aspects; a) multi-domain dataset
b) multi-domain network architecture, and c) training strategy.

3.3.1 Prototypical Multi-domain dataset
While forming the multi-domain dataset, we look for the following
two traits, a) input diversity coverage, and b) extent of categoriza-
tion (large number of fine-grained classes). The selected domains
must cover a wide range of variations in visual stimulus with an
intention to subsume the unknown client-side domains. Further,
generalizability to task-shifts can be stretched by training under
large-scale categorization (e.g., 1000-class ImageNet). We explore
the following two ways to get hold of such prototypical dataset.

a) Publicly available ImageNet variants (ImNet-P). We look
for publicly available large-scale datasets as used in domain-
specific studies, such as ImageNet-Sketch [41] (ImNet-Sk) for
sketch recognition. With original ImageNet [42] (ImNet-O) and
ImNet-Sk at the poles (see Fig. 1A), we use two intermediate
domains i.e. ImageNet-Rendition [43] (ImNet-R) and Stylized-
ImageNet [44] (ImNet-Sty). ImNet-R includes naturally occurring
changes in image style such as art, paintings, etc. And, ImNet-Sty
contains stylized [45] versions of the original ImNet-O samples.

b) Domain-varying augmentations of ImageNet (ImNet-A).
Certain prototype datasets, such as ImNet-Sk, ImNet-R selected
under ImNet-P, require explicit data collection effort. Thus,
a relaxed version of ImNet-P would be to prepare the proto-
type variants via diverse domain varying augmentations of the
original ImageNet (ImNet-O) samples i.e., without relying on
any explicit data collection effort. To this end, we introduce
ImNet-A which includes; a) original ImageNet (ImNet-O), b)
ImageNet-Edge (ImNet-E), c) ImageNet-Cartoon (ImNet-C), and
d) ImageNet-Stylized (ImNet-Sty). Here, ImNet-E (equivalent to
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B. MDN-Architecture

C. w/o OOD & BNM D. w/ OOD & BNM

A.Ideal scenario

Reduced support 
coverage

Fig. 4. A. In an ideal scenario, one should use fully unshared multi-
domain network architecture to fully leverage the prototype-specific (PS)
attributes. B. However, owing to computation complexity we resort to a
partially-shared MDN-architecture. We observe that, C. without encour-
aging explicit specificity the PS supports tend to be closer to the ERM
support. In order to recover from this detrimental effect, we instilling out-
of-domain detection capability to individual heads via OOD & BNM.

ImNet-Sk) is obtained by passing ImNet-O samples via a contour
detection model [46]. Similarly, ImNet-C (equivalent to ImNet-
R) is obtain by applying cartoonize augmentation [47] of the
original ImNet-O samples. Note that, ImNet-Sty is also a part
of ImNet-P.

How to select the most influential domain prototypes?
It is crucial to formalize a principled prototype selection criteria to
select a minimal set of prototype domains. Let Bc= {Bm′}M ′

m′=1

be the candidate set of prototype domains with M ′ number of
candidate members. And, we aim to select a subset B={Bm}Mm=1

with M < M ′. The number of domain-prototypes chosen, as
well as the domain-prototypes themselves, are crucial to the
effectiveness of vendor-side training. 1) It is critical to select
a diverse set of domain-prototypes to aid the proposed MDN in
learning both domain-invariant and domain-specific properties. 2)
A higher number of domain-prototypes incurs increased computa-
tional costs in vendor-side training. As a result, determining a low
enough M with a considerable performance gain is important.

We start with selecting the most preferred prototype domain,
i.e., the ImNet-O dataset as the only member of B(1) at the first
iteration. Following this, Bm′ ∈ Bc (associated with distribution
µm′ ) is chosen as the next member of B(i+1) if it satisfies the
following condition,

m′ = argmax
m̂∈Bc\B(i)

ϵµm̂
(h); h= argmin

ĥ∈Aαg
g (B(i))

ϵ
µα

(i)
g
(ĥ) (8)

Here, α
(i)
g is associated with the ith iteration of the ERM

baseline, which a measure over B(i) with a set cardinality i. In
other words, at each iteration i, we aim to select the prototype
domain that incurs the highest generalization error for the ERM
baseline. This procedure is described in Fig. 6A for ImNet-A.
Notations. The final multi-domain dataset is denoted by B =
∪Mm=1Bm. B is a collection of paired samples from all the
domains, i.e., (x, y) ∈ B with M being the total number of
prototype domains. Let J denote the number of categories in the
prototype domains.

Algorithm 1 Training the MDN base model.
1: require: Multi-domain dataset B, Initialize the parameters

θG, θHg
, θHm

(of G,Hg, Hm respectively) from an Ima-
geNet trained model. Weight for OOD loss, wood = 0.1

2: while the training has not converged do
3: (x, y)← B batch (equal no. of samples from Bm)
4: Comp. O :

∑
(x,y){CE(y, hb

g)} using Hg head
5: for each m′ in 1, 2, ..,M do
6: Perform batch-norm-masking (BNM) i.e. update the

batch-norm statistics of Hm′ only for samples from Bm′

though other samples are also inferred via Hm′ for the
OOD objective.

7: Comp. Om′ :
∑

(x,y)∈Bm′{CE(y, hb
m′)} via Hm′

8: Comp. Om′,ood :
∑

(x,y)∈B\Bm′

{−log(hb
m′,ood)} via Hm′

9: end for
10: update θG, θHg

, θHm
by minimizing the following

objective: O +
∑M

m′=1(Om′ + woodOm′,ood)
11: update affine parameters of batch-norm for each head Hm

using only corresponding in-domain samples from Bm
12: end while

3.3.2 Multi-domain network (MDN) architecture

The multi-domain network architecture is devised by drawing
motivation from the Specific+Generic (SG) MDL configuration
discussed in Sec. 3.2.3. To this end, we employ a multi-head
architecture consisting of a shared CNN backbone, G followed
by multiple prototype support heads, i.e., {Hk}Kk=1 (see Fig. 5A).
Here, K = M + 1. Thus, the support heads include M
number of prototype-specific (PS) heads {Hm}Mm=1 alongside
a single domain-generic (or ERM) head Hg . This is inline with
the Specific+Generic (SG) MDL configuration, as the classifier
heads {Hm}Mm=1 and Hg subscribe to the hypothesis supports
{Aαm

PS }Mm=1 and Aαg
g respectively (see Fig. 3). Accordingly, the

Hg head is trained on samples from all the prototype domains,
B (inline with ERM configuration) whereas individual Hm heads
are trained only on the respective prototype domain samples, Bm
(inline with PS configuration).

a) Requirement of explicit specificity. While training the MDN
architecture, our prime objective is to leverage the advantages
of the Specific+generic (SG) MDL discussed in Sec. 3.2.3. In
an ideal scenario, one should learn fully un-shared networks
as shown in Fig. 4A. However, owing to higher computation
complexity sharing the backbone network G seems to be a better
alternative. In an end-to-end training of MDN (with shared G),
the features extracted at the output of G must retain a mixture
of both domain-generic and domain-specific attributes. While Hg

would attend to the domain-generic factors, domain-specific heads
Hm should explicitly attend to the domain-specific features. To
this end, we hypothesize that instilling out-of-domain (OOD)
detection capability would guide the prototype specific heads to
explicitly attend prototype distinctive attributes, implying better
specificity. In the absence of the additional OOD objective the
prototype-specific hypothesis supports tends to be closer to the
ERM-support (refer Fig. 4C), thereby limiting the overall support
coverage which is detrimental to client-side extensibility.
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Fig. 5. A. MDN is trained on ImageNet-variant to yield domain-generic and domain-specific representations. B. MDN extends to single-source tasks
(transfer learning and single-source domain adaptation) through head-specific input stylization. C. MDN extends to multi-source tasks through
instance-to-head affinity. D. Unanimity based pseudo-labeling criterion is utilized for target adaptation.

Algorithm 2 Training for ITT

1: require: Transfer learning dataset Dtl. Initialize
θG, θH̃g

, θH̃m
from the MDN while C tl is initialized

randomly. Here, H̃ denotes MDN head w/o the last layer.
Stylization probability β is set as 0.25

2: while the training has not converged do
3: (x, y)← minibatch sampled from Dtl

4: for m in {1, 2, ...M} do
5: xb

m ← reference style images sampled from stored set

6: h̃m = H̃m ◦G
{
x Prob. 1− β

AdaIN(x, xb
m) Prob. β

7: end for
8: h̃g = H̃g ◦G(x), i.e. no stylization for H̃g .
9: F = L(h̃g, {h̃m}Mm=1), here L denotes the aggregation

operation (L:add or L:cat denotes addition or
concatenation based aggregation choices).

10: ŷtl = Ctl ◦ F ,
11: update θC tl by minimizing O :

∑
(x,y){CE(y, ŷtl)}

12: end while

3.3.3 Proposed multi-domain learning (MDL) strategy
Here, we discuss the training objectives for MDL. For the
generic-head, Hg , the final softmax output is denoted by hb

g =
Hg ◦ G(x). Here, ◦ represents the functional composition. For
the generic-head we employ the following training objective;
O : E(x,y)∈B{CE(y, hb

g)}.
Here, CE represents the cross-entropy loss. However, for each

domain specific head Hm′ , we first extend the dimension of last
layer output to (J + 1) by introducing a single OOD neuron. The
output of softmax applied over the (J + 1) logits is denoted by
hb
m′ = Hm′ ◦ G(x). Note that, the last neuron hb

m′,ood must
activate only for out-of-domain samples, i.e. for (x, y) ∈ B\Bm′ .
Whereas, for in-domain samples, i.e. for (x, y) ∈ Bm′ , the model
should activate the neuron corresponding to the true class-id. Thus,
for Hm′ , we devise the objectives Om′ and Om′,ood defined in
line 7 and 8 of Algo. 1 respectively. The final objective for an
end-to-end training of MDN is given by line 10 in Algo. 1.
a) Enforcing explicit specificity via OOD & BNM. Note that the
training objectives for the domain-specific heads put equal em-

phasis on both in-domain and out-of-domain samples. However,
we aim to realize a greater specificity by explicitly prioritizing the
learning on in-domain samples. We achieve this by proposing a
modified batch normalization (BN) strategy namely, batch-norm-
masking (BNM). In contrast to the usual BN [39], we compute
batch-statistics using only in-domain samples and update the affine
BN parameters only for the in-domain samples. BNM favours
OOD detection, which allows the model to focus on solving the
in-domain classification task over the OOD detection task.

3.4 Extending MDN at client-side
Once the vendor shares the multi-domain network with the client,
the client can extend it to a downstream task of their choice.
The downstream task could be inductive (task-shift) or tranductive
(domain-shift). Different downstream tasks are shown in Fig. 2B.

3.4.1 Extending for Inductive-Task-Transfer (ITT)
ITT refers to the widely used transfer-learning setting where we
intend to evaluate the extensibility of learned representations to a
diverse set of recognition tasks.
Problem setting. We are given access to a new dataset Dtl

consisting of labelled images. In relation to the multi-domain data
B, Dtl exhibits a varied shift in task, in the absence of domain
shift. Following linear evaluation protocol, we introduce a single
linear layer C tl to perform a classification over ctl classes as per
the categorization in Dtl.
Learning strategy. Dtl may or may not be similar to the domains
used in B. Thus, we leverage the domain-specificity knowledge of
the MDN heads by generating stylized versions of Dtl to construct
a virtual multi-domain data Dtl = ∪Mm=1D

tl
m (see Fig. 5B). Here,

samples for each virtual domain, Dtl
m is obtained by stylizing the

Dtl samples via AdaIN [45] using a small set of reference style
images (10 images per prototype domain) stored from Bm. No
stylization is applied for Hg . This makes Dtl to resemble samples
from the multi-domain data B. Next, we prepare the general
purpose representation for each Dtl instance, F by aggregating
penultimate domain-specific features from all the MDN heads.
These are obtained by forwarding the corresponding head-specific
stylizations of the same instance. The aggregation could be simply
a concatenation or an addition operation. The training objective is
simply cross-entropy as expressed in line 11 of Algo. 2.
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TABLE 2
Notation table for vendor-side and client-side approach (Sec. 3.3, 3.4)

Sym. Description
N

et
w

or
k

co
m

po
ne

nt
s

G Shared backbone (ResNet) of MDN
Hm Domain specific head of MDN
Hg The generic head of MDN
H̃ Represents MDN head w/o the classifier layer
C tl Last linear layer for ITT
Css

m SST classifier post H̃k̃

Css
g SST classifier post H̃g

Cms
m MST classifier post H̃k̃

Cms
g MST classifier post H̃g

M
is

c.
si

ze
s

M Number of prototype domains; m ∈ {1, . . . ,M}
J Number of classes in prototype domains; j∈{1, . . . J}
K Number of heads in MDN; k ∈ {1, 2, . . . ,K}

I
Number of classes in client-side datasets. Iss, Ims, Itl
denotes the same for single-source, multi-source and
transfer learning datasets. i ∈ {1, . . . , I}

3.4.2 Extending for Single-Source-Transfer (SST)

We propose single-source transfer as a source-only initialization
step before performing single-source DA (SSDA).
Problem Setting. We are given access to a single source domain
dataset, Dss consisting of images with paired category annotations.
In relation to the multi-domain data B, Dss exhibits a diverse shift
across both domain and task.
Learning strategy. We follow a similar training strategy pro-
posed for ITT while allowing fine-tuning. Instead of aggregating
penultimate features, we enforce the cross-entropy loss on all
heads independently (see Fig. 5B). The learning retains head-
specificity characteristics of the base-MDN as each head is trained
on correspondingly stylized samples.

3.4.3 Extending for Multi-Source-Transfer (MST)

We propose MST as a source-only preparation of MDN (see Fig. 5C)
which is useful for both domain generalization (DG) and multi-
source domain adaptation (MSDA).

Problem setting. We are given access to a multi-source dataset
Dms = ∪Lms

l=1D
ms
l which is a collection of Lms source domains

each consisting of images with paired category annotations (with
Ims number of classes). In relation to B, Dms exhibits a diverse
shift across both domain and task.

Learning strategy. Unlike Dtl and Dss, Dms is a mixture of
samples from multiple sources. We find that a particular MDN head
or a combination is best suited only for a subset of multi-source
samples. It turns out that such association is not present at the
domain-level but at an instance level (see Section 4.2, Observation
3). We leverage these instance-level associations to utilize the
instilled head-specificity knowledge of MDN. For each instance
in Dms, we introduce an instance-to-head affinity score denoted
as λk where k is the index over all the MDN heads (including the
generic-head). The prime question that arises is how to determine
the affinity values λk.

a) Determining instance-level affinities. Let, {yms
i }I

ms

i=1 denote
the class-labels for Dms and hb

k,j denotes the confidence of j th

class computed for each MDN head H̃k, k = 1, 2, . . . ,K . The
instance-level soft-affinities are determined by extending a trans-
ferability measure for the proposed multi-head MDN. Intuitively,

Algorithm 3 Training for MST
1: require: Multi-source dataset Dms. Initialize θG, θH̃g

, θH̃m

from MDN. Here, H̃ denotes MDN head w/o the last layer.
Random initialization of Cms

m , Cms
g .

Step 1: Initializing instance-level affinities
2: for i in {1, 2, . . . , Ims} do (i.e. over classes in Dms)
3: Obtain Dms

i ={(x, y) : (x, y)∈Dms and y = i}
4: Precompute ek,j,i =

1
|Dms

i |
∑

(x,y)∈Dms
i
hb
k,j

where hb
k,j denotes confidence of j th prototype-class from

kth head of MDN.
5: end for
6: Initialize instance-level affinity, λ

(x)
k =

∑
j h

b
k,j

ek,j,y∑
i ek,j,i

∀(x, y) ∈ Dms and ∀ k (using the precomputed ek,j,i).
Step 2: Training process

7: while the training has not converged do
8: (x, y)← minibatch sampled from Dms

9: Compute hms
k = softmax(λ(x)

k Cms
k ◦ H̃k ◦G(x))

10: Compute O :
∑

(x,y){CE(y, hms
k )}

11: update θG, θH̃m
, θH̃g

, θCms
m
, θCms

g
, λ by minimizing O.

Note that λ is updated by backprop during training
12: end while

affinity value λ
(x)
k for an instance x (see line 6 of Algo. 3) can

be seen as the expected confidence of a classifier-head in the Ims

space, considering J as a latent space. We use normalized λ
(x)
k to

initialize the affinity score separately for each source instance x.

b) Training objective. After initializing the affinities, we fine-
tune the base MDN by modifying the last layer of each MDN
head k to perform classification over cms classes (i.e. Cms

k ◦ H̃k).
The affinities are then updated by back-propagation. The training
objective is as expressed in line 10 in Algo. 3. Unlike in SST,
the generic head is treated as one of the candidate heads similar
to other domain-specific ones. This allows samples from novel
sources to have a higher affinity towards the generic-head. For
such samples, domain-generic knowledge is more suitable than
domain-specific.

3.4.4 Extending for Target Adaptation (TA)

TA refers to the adaptation phase (see Fig. 5D) as required for
both single source DA and multi source DA.

Problem setting. After extending MDN for SST and MST, TA is
performed to adapt the extended models to new unlabeled target
data, Dt. Dt exhibits a diverse input domain-shift w.r.t. Dss or
Dms, but no shift in the output task, though entirely unlabeled.

Learning strategy. We draw motivation from the pseudo-label
based self-training approaches [48]. Let Dt

p denote the pseudo-
label subset. In literature, several approaches rely on “confidence-
thresholding” [49], [50] as the selection-criteria. Here, a target
sample is selected if its maximum class confidence exceeds a
certain threshold value. Such approaches are shown to be suffering
from information redundancy and label noise [33], [51].
a) Multi-head-unanimity (mhu). Acknowledging the above, we
devise a novel selection criteria by leveraging the multi-head
predictions of MDN. In order to remove label-noise, we essentially
need easy samples which we argue should be correctly predicted
irrespective of the domain. To this end, we propose a criterion
where a target sample is selected only if its predictions across all
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Algorithm 4 Training for TA
1: require: Single-source (or multi-source) data Dss (or Dms).

Unlabeled target data Dt. Initialize θG, θH̃m
, θH̃g

, θCss
g

, θCss
m

from SST (or MST) trained model. Here, H̃ denotes MDN head
w/o the last layer. Hyperparameters γ.

Step 1: Pseudo-labeling process
2: for k in {1, 2, ...,K} do (i.e. over all MDN heads)
3: Compute ht

k ← Css
k ◦ H̃k ◦G(x), ∀x ∈ Dt

4: end for
5: Multi-head-unanimity (mhu) for each instance x∈Dt,

ut(x)←
∏

k ̸=k′1( argmax
i∈{1,...,Iss}

ht
k,i= argmax

i∈{1,...,Iss}
ht
k′,i)

where ht
k,i denotes confidence of kth head for ith class of Dss

6: Prepare pseudo-labeled subset with samples having mhu 1,
Dt

p←{(x, yp) : x∈Dt, ut(x)= 1, yp= argmax
i∈{1,...,Iss}

ht
k,i ∀ k}

7: Prune Dt
p by selecting samples w/ confidence greater than γ,

Dt
p ← {(x, yp) ∈ Dt

p : ht
k > γ ∀k}

Step 2: Adaptation process
8: while training has not converged do
9: (x, y)← minibatch sampled from Dss.

10: (xp, yp)← minibatch sampled from Dt
p.

11: hss
m ← Css

m ◦ H̃m ◦G(x)
12: hss

g ← Css
g ◦ H̃g ◦G(x)

13: ht
m ← Css

m ◦ H̃m ◦G(xp)
14: ht

g ← Css
g ◦ H̃g ◦G(xp)

15: Comp. Om :
∑
{CE(y, hss

m) + CE(yp, ht
m)}

16: Comp. Og :
∑
{CE(y, hss

g ) + CE(yp, ht
g)}

17: update θG, θH̃m
, θH̃g

, θCss
g

, θCss
m

by minimizing
Og +

∑
mOm

18: end while
(For multi-source dataset Dms, the same process is followed
by replacing hss with hms and similarly for other terms)

the heads fire maximally for the same class id (i.e. “multi-head-
unanimity” (mhu)) (see lines 6-7 in Algo. 4).
b) How do instance-affinities help? While addressing MSDA, the
usage of soft-affinities in MST allows the MDN heads to retain head-
specificity without respecting the source-specificity of the multi-
source data Dms. Essentially, the domain-label information of Dms

remains unused. This allows the samples of a particular source
domain to exhibit varied instance-level affinity. Thus, post MST,
the MDN heads can be perceived as mix-source ensembles. There-
fore, an agreement among such mix-source ensembles reduces the
generalization error thereby facilitating selection of reliable and
informative target pseudo-labels.

4 EXPERIMENTS

At the vendor side, we evaluate the impact of Specific+generic
(SG) MDL to enable extensibility at the client side. At the client
side, we evaluate the extensibility of MDN under various task and
domain shift benchmarks such as transfer learning (TL), single-
source (SSDA) and multi-source domain adaptation (MSDA) and
domain generalization (DG).

Datasets. We summarize the datasets used for vendor-side and
client-side experiments in Table 3. For MDN training, we uti-
lize ImageNet-Original [42], ImageNet-Rendition [43], ImageNet-

TABLE 3
Dataset summary for vendor-side and client-side experiments

Vendor-side (K=5)

ImNet-P (K∼=4) ImNet-A (K∼=4)

ImNet-O (Original) [42] ImNet-O (Original)
ImNet-Sk (Sketch) [41] ImNet-E (Edge)

ImNet-R (Rendition) [43] ImNet-C (Cartoon)
ImNet-Sty (Stylized) [44] ImNet-Sty (Stylized)

Client Side

SSDA L #c

DomainNet [32] 6 345
Office-31 [52] 3 31

DG / MSDA L #c

DomainNet [32] 6 345
PACS [53] 4 7

Office-Home [54] 6 65

TL #c

FGVC Aircraft [55] 100
Stanford Cars [56] 196
CIFAR-100 [57] 100
CIFAR-10 [57] 10

Caltech-101 [58] 101
Caltech-256 [59] 257

DTD [60] 47
Oxford 102 Flowers [61] 102

Oxford-IIIT Pets [62] 37

TABLE 4
Detailed architecture of MDN and its extensions.

Task Component Layers

G ResNet till conv4 x
H̃1, H̃2, H̃3, H̃4, H̃g ResNet conv5 x → GAP → L2-Norm

I
T
T

Aggregation layer L(H̃1, H̃2, H̃3, H̃4, H̃g)
C tl,L : cat FC(5*2048×|ctl|)
C tl,L : add FC(2048×|ctl|)

S
S
T Css

m, Css
g FC(2048×1024) → ELU → BN →

Dropout(0.1) → FC(1024×|css|)

M
S
T Cms

m , Cms
g FC(2048×1024) → ELU → BN →

Dropout(0.1) → FC(1024×|cms|)

Sketch [41] and Stylized-ImageNet [44]. The combined set is re-
ferred as ImNet-P. For TL tasks, we utilize the downstream im-
age classification datasets as examined in [9], [17]. For evaluating
performance on SSDA, MSDA and DG, we utilize DomainNet
[32], PACS [53], Office-31 [52] and Office-Home [66] datasets.

Implementation Details. We adopt ResNet [67] architecture for
MDN. ResNet is split into the shared backbone G and the classifier-
heads Hk. All the layers upto conv4 x constitute the shared
backbone G. conv5 x layer is duplicated for each classifier-head
Hk. The batch-norm [39] layers in the classifier-heads are replaced
with batch-norm-masking (BNM) layers. Table 4 contains all
architectural details. All the models are trained using Adam [68]
optimizer starting with a learning rate of 5e−5 and a scheduler
reducing the learning rate by half every 5k steps, for a total of
maximum 500k steps. We randomly store 10 reference images per
domain from B for stylization in ITT. For DG, SSDA and MSDA,
classifier-head predictions are simply averaged at inference time.

4.1 Evaluating our vendor-side strategy

We analyze the different components proposed for our vendor-side
strategy as well as compare with state-of-the-art MDL works.
Observation 1. In the absence of natural multi-domain data
(ImNet-P), datasets formed via domain-varying augmentations
(ImNet-A) yield competitive performance with MDN.
Remarks. To this end, we train an MDN network solely on
ImNet-A i.e. augmented version of a single-domain dataset.
We report the obtained results along with those obtained with
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TABLE 5
Ablation Table. We apply FACT [63] to all heads and final result is an ensemble of all heads, and we do the same for DRT [64]

Client-side
Vendor-data Training Strategy TL DG on PACS MSDA on DomainNet

Dataset ablations MDL Ablations #r A. Finetune B. FACT [63] C. Ours-DG D. DRT [64] E. Ours-MSDA

ImNet-O ERM baseline 1 72.32 84.52 84.05 51.3 49.91

ERM baseline 2 72.57 84.54 84.75 51.34 51.08

Ours PS w/o BNM + OOD 3 73.15 84.49 85.00 51.42 51.58
w/ BNM + OOD 4 75.25 84.93 86.46 51.87 52.21

Ours SG w/o BNM + OOD 5 74.24 84.74 85.69 51.71 52.25
w/ BNM + OOD 6 76.29 85.21 87.23 52.05 53.18

MDL
Prior-arts

SUR [34] ECCV’20 7 73.11 84.57 85.09 51.35 51.14

ImNet-A

URL [65] ICCV’21 8 73.24 84.68 85.39 51.45 51.50

ERM baseline 9 73.16 84.62 85.25 51.31 51.65

Ours PS w/o BNM + OOD 10 74.6 85.24 85.03 51.45 51.42
w/ BNM + OOD 11 77.21 85.82 86.31 51.85 53.02

Ours SG w/o BNM + OOD 12 75.58 85.43 85.86 51.65 52.06
w/ BNM + OOD 13 78.34 86.22 87.84 52.15 53.91

MDL
Prior-arts

SUR [34] ECCV’20 14 74.01 84.71 85.13 51.39 51.46

Ve
nd

or
-s

id
e

ImNet-P

URL [65] ICCV’21 15 74.27 85.37 86.07 51.47 51.71
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Original Rendition Sketch Stylized

Vendor 81.43 76.1 53.6 62.44

Client (DG on PACS) 76.5 80.1 58.5 67.8

65.1 72.4 81.5 83.27

ERM baseline accuracy

Fig. 6. A. For ImNet-A, only augmentations of vendor-side data result-
ing in significant accuracy drop w.r.t. ERM baseline on original vendor-
side data are selected. B. Performance of vendor-side trained models
on target data when varying number of augmentations M . Performance
saturates as M reaches 4. Here, O, E, St, C indicate use of ImNet-O,
ImNet-E, ImNet-Sty and ImNet-C respectively (see Sec 4.1.2).

ImNet-P for multiple downstream tasks and datasets (Tables 6-
9). We observe that simply using a single-domain dataset with
domain-varying augmentations can yield significant improvements
w.r.t. competing methods. This underlines the practical utility of
the MDL paradigm to learn features that can generalize well to di-
verse domains and tasks with just domain-varying augmentations.
Observation 2. Batch-norm-masking (BNM) for out-of-domain
(OOD) samples improves the extensibility of MDN and instills
domain-specificity in its learned representations.
Remarks. We evaluate the utility of OOD and BNM for multiple
client-side tasks and vendor-side training strategies, and report the
results in Table 5. Table 5 has 15 rows (numbered 1 to 15) and
5 columns (named A to E). Henceforth, we refer to specific cells
in Table 5 by their column name and row number (e.g. A3, E5,
etc). We observe consistent improvements, comparing w/o and
w/ BNM+OOD, across different client-side learning strategies,
downstream tasks, and MDL strategies (e.g. A3 vs. A4, A10 vs.
A11, etc). In Fig. 7D, we visualize the domain specificity of the
representations learned by MDN using t-SNE [69] plots. We pass
ImNet-P images through H1, the branch specific to ImNet-O,
and t-SNE is performed on features obtained at the penultimate
layer. We observe that in-domain and out-of-domain samples are

TABLE 6
Domain generalization (MST) accuracy on DomainNet with ResNet-50.

IN-O, IN-A, IN-P indicate ImNet-O, ImNet-A, ImNet-P.

Method B �C �I �P �Q �R �S Avg.

MetaReg [29] IN-O 59.7 25.5 50.2 11.5 64.5 50.1 43.6
DMG [70] IN-O 65.2 22.1 50.0 15.7 59.6 49.0 43.6
STEAM [71] IN-O 64.6 27.0 54.0 15.8 65.6 52.2 46.5
DMG [70] IN-A 66.1 21.3 51.9 16.2 60.0 49.3 44.1
Ours (w/o aff) IN-A 66.2 22.0 52.6 17.2 64.1 52.4 45.8
(MST) (w/ aff) IN-A 67.6 22.5 55.8 19.3 66.0 57.6 48.1
DMG [70] IN-P 66.4 21.9 52.4 16.4 60.3 49.8 44.5
Ours (w/o aff) IN-P 66.7 22.1 53.1 17.4 64.8 52.9 46.1
(MST) (w/ aff) IN-P 68.2 22.9 56.0 19.7 66.3 58.1 48.5

well separated after incorporating BNM and OOD.

4.1.1 Disentangling the gains of ImNet-P over ImNet-O
Question. Can the performance gains be attributed simply to the
additional data in ImNet-A or ImNet-P against ImNet-O?
Remarks. Towards this, we evaluate the ERM baseline with all
three ImageNet variants i.e. ImNet-O, ImNet-A and ImNet-P
in Table 5. For the challenging MSDA task on DomainNet,
we observe that using ImNet-A and ImNet-P improves over
ImNet-O by 1.1% and 1.7% respectively (E9, E2 vs. E1, Table
5). Further, our proposed approach improves over the ImNet-A
and ImNet-P ERM baselines by 2.1% and 2.2% respectively (E6
vs. E2 and E13 vs. E9, Table 5). We observe a similar trend across
all tasks reported in Table 5. Thus, while some gains are observed
from additional ImNet-A or ImNet-P data, our vendor-side
and client-side strategies effectively leverage the multi-domain
knowledge, yielding further significant improvements.

4.1.2 Effect of number of domain prototypes
In Fig. 6B, we investigate the influence of number of domain-
prototypes on performance. We focus on client-side models (DG
on PACS) with varying numbers of domain prototypes utilized
during vendor-side training. Because there are several candidate
domain prototype combinations to pick from, we prioritize the
most diversified ones to obtain the best possible performance at a
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TABLE 7
Domain Generalization (MST) on Office-Home with ResNet-18. IN-O,
IN-A, IN-P indicate ImNet-O, ImNet-A, ImNet-P respectively.

Method B �Ar �Cl �Pr �Rw Avg.

Jigen [12] IN-O 53.0 47.5 71.5 72.8 61.2
RSC [72] IN-O 58.4 47.9 71.6 74.5 63.1
L2A-OT [73] IN-O 60.6 50.1 74.8 77.0 65.6
DDAIG [74] IN-O 59.2 52.3 74.6 76.0 65.5
DSON [75] IN-O 59.4 45.7 71.8 74.7 62.9
ATSRL [76] IN-O 60.7 52.9 75.8 77.2 66.7
MixStyle [77] IN-O 58.7 53.4 74.2 75.9 65.5
COPA [78] IN-O 59.4 55.1 74.8 75.0 66.1
STEAM [71] IN-O 62.1 52.3 75.4 77.5 66.8
FACT [63] IN-O 60.3 54.8 74.5 76.5 66.5
FACT [63] IN-A 60.8 55.4 75.1 77.0 67.1
Ours (w/o aff) IN-A 59.5 52.5 74.8 77.3 66.1
(MST) (w/ aff) IN-A 63.5 57.4 76.7 78.5 69.0
FACT [63] IN-P 61.7 55.7 75.6 77.5 67.6
Ours (w/o aff) IN-P 60.5 53.4 74.5 77.8 66.5
(MST) (w/ aff) IN-P 64.2 57.8 77.0 79.1 69.5

TABLE 8
Single-Source DA (SST → TA) on Office-31 with ResNet-50. IN-O,
IN-A, IN-P indicate ImNet-O, ImNet-A, ImNet-P respectively.

Method B A( )W )D) D( )W )A) W( )D )A) Avg.

Single Source Transfer
CAN(SO) [79] IN-O 68.4 68.9 96.7 62.5 99.3 60.7 76.1
CAN(SO) [79] IN-A 68.9 69.5 97.1 62.7 99.3 61.2 76.4
Ours (w/o Sty) IN-A 69.2 70.5 97.3 63.1 99.3 62.3 76.9
(SST) (w/ Sty) IN-A 69.6 72.8 97.9 64.4 99.4 62.7 77.8
CAN(SO) [79] IN-P 69.3 69.7 97.4 62.8 99.4 61.8 76.7
Ours (w/o Sty) IN-P 69.7 71.5 97.4 63.8 99.4 63.1 77.5
(SST) (w/ Sty) IN-P 70.2 73.5 98.0 64.7 99.4 63.4 78.2

Single Source Domain Adaptation
DMRL [80] IN-O 90.8 93.4 99.0 73.0 100 71.2 87.9
GSDA [81] IN-O 95.7 94.8 99.1 73.5 100 74.9 89.7
SFIT [82] IN-O 91.8 89.9 98.7 73.9 99.9 72.0 87.7
CAN [79] IN-O 94.5 95.0 99.1 78.0 99.8 77.0 90.6
d-SNE∗ [83] IN-O 96.6 94.6 99.1 75.5 100 74.2 90.0
SRDC [84] IN-O 95.7 95.8 99.2 76.7 100 77.1 90.8
RSDA-MSTN [85] IN-O 96.1 95.8 99.3 77.4 100 78.9 91.1
SHOT++ [86] IN-O 90.4 94.3 98.7 76.2 99.9 75.8 89.2
SHOT [87] IN-O 90.9 93.1 98.8 74.5 99.9 74.8 88.7
SFIT [82] IN-O 91.8 89.9 98.7 73.9 99.9 72.0 87.7
FAA [88] IN-O 92.3 94.4 99.2 80.5 99.7 78.7 90.8
RADA [89] IN-O 96.2 96.1 99.3 77.5 100 77.4 91.1
RFA [90] IN-O 92.8 93.0 99.1 78.0 100 77.7 90.2
FixBi [91] IN-O 96.1 95.0 99.3 78.7 100 79.4 91.4
FixBi [91] IN-A 96.3 95.4 99.5 79.4 99.9 79.7 91.7
Ours (conf) IN-A 91.9 92.1 97.7 78.8 99.8 78.1 89.7
(SST�TA) (mhu) IN-A 96.4 95.6 99.4 80.6 100 80.1 92.0
FixBi [91] IN-P 96.8 96.0 99.7 80.0 99.9 80.4 92.1
Ours (conf) IN-P 92.2 93.1 98.1 79.1 100 79.4 90.3
(SST�TA) (mhu) IN-P 97.1 95.8 99.7 82.2 100 81.8 92.8

lower M . In other words, the prototype with the highest error for
the ERM baseline model is picked first. The sequence is shown in
Fig. 6B as ImNet-E, ImNet-St, and ImNet-C. When we use this or-
der to select prototype domains for M = {1, 2, ..., 4}, we observe
that performance saturates as M approaches 4. As a consequence,
we conclude that adding additional domain prototypes would not
result in a significant performance gain. A similar process is used
to choose prototype domains for ImNet-P.

4.1.3 Comparisons with prior MDL works
We evaluate the generalizability of our proposed vendor-side spe-
cific+generic (SG) framework with existing Multi-Domain Learn-

TABLE 9
Multi-Source DA (MST → TA) on Office-Home with ResNet-50. IN-O,
IN-A, IN-P indicate ImNet-O, ImNet-A, ImNet-P respectively.

Method B �Ar �Cl �Pr �Rw Avg.

MIMFTL [92] IN-O 72.6 64.3 81.9 83.1 75.5
DECISION [93] IN-O 74.5 59.4 84.4 83.3 75.4
WAMDA [94] IN-O 71.9 61.4 84.1 82.3 74.9
CAiDA [95] IN-O 75.2 60.5 84.7 84.2 76.2
DARN [96] IN-O 70.0±0.4 68.4±0.1 82.7±0.2 83.9±0.2 76.2
SImpAl [97] IN-O 70.8±0.2 56.3±0.2 80.2±0.3 81.5±0.3 72.2
MIAN [98] IN-O 69.9±0.3 64.2±0.7 80.9±0.4 81.5±0.2 74.1
CMSDA [99] IN-O 71.5±0.3 67.7±0.2 84.2±0.3 83.0±0.4 76.6
CMSDA [99] IN-A 71.9±0.2 69.2±0.4 85.2±0.3 83.5±0.2 77.45
Ours (conf) IN-A 71.8±0.1 72.9±0.3 83.3±0.4 82.1±0.2 77.5
(MST�TA) (mhu) IN-A 73.2±0.1 76.2±0.2 85.3±0.3 82.9±0.1 79.4
CMSDA [99] IN-P 72.0±0.3 69.5±0.3 85.6±0.4 83.4±0.2 77.6
Ours (conf) IN-P 72.0±0.1 70.2±0.4 85.9±0.3 83.5±0.1 77.9
(MST�TA) (mhu) IN-P 73.8±0.2 76.5±0.3 85.5±0.2 83.3±0.1 79.8

ing (MDL) works [34], [65]. These prior MDL works report only
few-shot multi-domain transfer learning results where vendor-side
is similar to our setup i.e. a multi-domain dataset is used for
training. However, in client-side, they use a support set and a query
set (source and target in our setup) but there is no support-query
domain shift. Thus, we report results by training with their MDL
strategies on both ImNet-A and ImNet-P, along with different
downstream task algorithms. We also evaluate the standard ERM
baseline, where all domain data is used without considering the
domain labels.
Transfer Learning (TL). We report the average accuracy over
downstream transfer learning to 9 datasets (Table 3, ITT). With
the ImNet-A vendor-side dataset, prior MDL works SUR [34]
and URL [65] achieve marginal improvements of ∼0.6% over the
ERM baseline (A7, A8 vs. A2 in Table 5). Whereas, our proposed
prototype-specific (PS) baseline and specific+generic (SG) MDL
yield gains of ∼2% and ∼3% over URL (A4, A6 vs. A8 in Table
5). With the more diverse ImNet-P vendor-side dataset, our PS
baseline and SG MDL achieve higher gains of ∼3% and ∼4%
over the equivalent URL results (A11, A13 vs. A15 in Table 5).
Domain Generalization (DG). Following standard DG evaluation
methodology, we report the average target accuracy considering
each domain as target and remaining domains as multi-source
domains. With ImNet-P vendor-side data, SUR underperforms
and URL improves by∼0.8% w.r.t. the ERM baseline respectively
(C14, C15 vs. C9, Table 5) while our final SG variant yields a gain
of 1.8% over URL (C13 vs. C15, Table 5).
Multi-Source DA (MSDA). We follow the same evaluation proto-
col as in DG. With ImNet-P vendor-side data, SUR again under-
performs w.r.t. ERM baseline while URL improves marginally by
0.06% (E14, E15 vs. E9, Table 5). Our final SG variant improves
by 2.2% over URL (E13 vs. E15, Table 5).

4.2 Evaluating our client-side strategy
We analyze the different components proposed for client-side
algorithms and compare with state-of-the-art DG, SSDA, MSDA
and TL works on a wide range of standard benchmarks.
Observation 3. Instance-level affinity better suits MST and sub-
sequent TA than domain-level affinity, and results in improved
performance over any single branch of MDN.
Remarks. We compare the affinities at domain-level and at
instance-level for Art-Painting (→Ar) domain from PACS in
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Fig. 7. A. Comparison of domain-level (left) and instance-level (right) affinity for a single domain using box plots (see Observ. 3, Sec. 4.2). B. Some
classes have higher affinities towards certain heads, while others are distributed. Together with A, this demonstrates the necessity of instance-level
affinity. C. Combining based on affinity (shown as Hλ) works better than any single branch. D. t-SNE plots for representations learned w/ and w/o
OOD & BNM (see Observ. 2, Sec. 4.1). E. mhu reduces label noise compared to confidence thresholding (see Observ. 4, Sec. 4.2).

TABLE 10
Single-best DA (SST → TA) on DomainNet w/ ResNet-50. SO, IN-O,
IN-A, IN-P indicate source only, ImNet-O, ImNet-A, ImNet-P.

Method B R(�C �I �P) C(�Q �S) P�R Avg.

Single Source Transfer
M3SDA (SO) [32] IN-O 48.4 22.2 49.4 11.1 41.0 54.5 37.8
M3SDA (SO) [32] IN-A 48.5 22.2 49.6 11.5 41.1 54.4 37.9
Ours (w/o Sty) IN-A 49.4 17.1 48.5 14.2 45.8 53.5 38.1
(SST) (w/ Sty) IN-A 51.6 18.5 49.6 16.0 47.0 52.3 39.1
M3SDA (SO) [32] IN-P 48.8 22.6 49.5 11.7 41.3 54.7 38.1
Ours (w/o Sty) IN-P 49.9 17.4 48.8 14.3 46.0 53.8 38.4
(SST) (w/ Sty) IN-P 51.7 18.8 50.1 18.4 47.2 52.6 39.8

Single Source Domain Adaptation
CGDM [100] IN-O 50.8 38.5 54.5 17.8 54.9 49.7 44.3
MIMTFL [92] IN-O 51.7 19.0 47.6 12.3 43.1 55.4 38.2
DRT [64] IN-O 56.2 26.6 53.4 12.2 55.5 44.8 41.5
DRT [64] IN-A 56.8 26.3 54.8 15.3 56.9 45.4 42.6
Ours (conf) IN-A 54.1 20.8 51.4 21.1 47.2 56.5 41.8
(SST�TA) (mhu) IN-A 58.0 23.2 53.1 24.9 49.4 57.5 44.3
DRT [64] IN-P 56.7 26.7 55.3 15.5 57.2 45.9 42.9
Ours (conf) IN-P 54.4 20.2 51.5 21.5 47.9 57.1 42.1
(SST�TA) (mhu) IN-P 58.3 23.5 53.8 25.6 49.6 58.2 44.8

Fig. 7A, 7B. For domain-level, we observe very high within-
head variability with no observed affinity for any head. For
instance-level, we observe that the affinity for the current head
is significantly higher than other heads, with reduced within-head
variance. Additionally, we observe that certain classes have pref-
erences towards certain branches, while other classes do not have
any particular preference (Fig. 7B). Instance-level affinities are
effective for these classes. Fig. 7C demonstrates how using affinity
λk to combine the predictions performs better than any other
single branch. We also evaluate the effectiveness of initializing
affinities (refer Section 3.4.3) by testing it on →Ar (PACS). On
random initialization, the performance drops from 91.22 to 90.49
highlighting the importance of affinity initialization.

Observation 4. Multi-head unanimity (mhu) is well-tailored to
aid TA in MDN, especially in challenging settings.

Remarks. The use of mhu reduces the pseudo-label noise by
exploiting both domain-specific and domain-generic heads in MDN,
as depicted in Fig. 7E. Note that, while label noise reduction may
not translate to a proportional performance improvements in all
cases, it will yield significant gains in difficult settings as they
tend to have higher label noise. e.g.→Q in DomainNet is highly
challenging but mhu achieves +7.8% over conf (Table 13).

TABLE 11
Domain generalization (MST) accuracy on PACS with ResNet-18. IN-O,

IN-A, IN-P indicate ImNet-O, ImNet-A, ImNet-P respectively.

Method B �Ar �Ca �Ph �Sk Avg.

DSON [75] IN-O 84.7 77.7 95.9 82.2 85.1
ASR [101] IN-O 84.8 81.8 96.1 82.6 86.3
COPA [78] IN-O 83.3 79.8 94.6 82.5 85.1
STEAM [71] IN-O 85.5 80.6 97.5 82.9 86.6
L2D [102] IN-O 81.4 79.6 95.5 80.6 84.3
MixStyle [77] IN-O 84.1±0.4 78.8±0.4 96.1±0.3 75.9±0.9 83.7
DIRT-GAN [103] IN-O 82.6±0.4 76.4±0.3 95.6±0.5 79.9±0.2 83.6
MBDG [104] IN-O 80.6±1.1 79.3±0.2 97.0±0.4 85.2±0.2 85.6
RSC [72] IN-O 83.4±0.8 80.3±0.4 96.0±0.0 80.9±1.7 85.2
ATSRL [76] IN-O 85.8±0.6 80.7±0.5 97.3±0.3 77.3±0.5 85.3
SelfReg [105] IN-O 82.3±0.5 78.4±0.7 96.2±0.3 77.5±0.8 83.6
FACT [63] IN-O 85.4±0.3 78.4±0.3 95.1±0.3 79.1±0.7 84.5
FACT [63] IN-A 86.0±0.3 79.6±0.3 95.7±0.4 79.7±0.6 85.2
Ours (w/o aff) IN-A 83.4±0.4 81.3±0.4 93.9±0.5 80.2±0.2 84.7
(MST) (w/ aff) IN-A 86.6±0.3 81.5±0.3 96.4±0.4 84.2±0.2 87.2
FACT [63] IN-P 86.4±0.3 80.4±0.2 96.5±0.4 81.6±0.3 86.2
Ours (w/o aff) IN-P 83.8±0.4 81.8±0.2 94.8±0.5 80.5±0.2 85.2
(MST) (w/ aff) IN-P 87.2±0.3 82.0±0.2 97.1±0.3 84.7±0.2 87.8

4.2.1 Extensibility of prior DA works with MDN

Observation 5. Our proposed client-side algorithms are better
equipped, than existing DG and DA algorithms, to properly
leverage the capabilities of the learned MDN representations.
Remarks. We train the SOTA DG work, FACT [63], and the
SOTA MSDA work, DRT [64], initialized with different variants
of MDN trained on ImNet-A and ImNet-P (see Table 5). We
observe that Ours-DG consistently outperforms FACT (column
C2-15 vs. B2-15) and Ours-MSDA consistently outperforms DRT
(column E2-15 vs. D2-15). Thus, our proposed client-side algo-
rithms better leverage the MDN knowledge compared to existing
DG and DA works.

4.2.2 Comparisons with prior TL and DA works

a) Extensibility to task-shifts (TL). Table 12 reports the accuracy
using the linear evaluation protocol [9] for transfer learning. MDN
outperforms the standard ImageNet trained model on 7 out of
9 datasets. Note that [9] performs robust training with 3-step
adversaries i.e. 3 backward steps for adversary generation and
1 backward step for model training. Thus, MDN achieves similar
performance to [9] with ∼4 times lower computation (i.e. faster
training). This demonstrates the extensibility of MDN to task-shifts
across a diverse set of downstream datasets with varying image
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TABLE 12
Transfer accuracy of MDN on downstream tasks (ITT) using linear evaluation with different stylization and aggregation settings (L). See Sec 4.2.2a.

Method Datasets

Aircraft Cars CIFAR-10 CIFAR-100 Caltech-101 Caltech-256 DTD Flowers Pets Avg.

Robust ImageNet [9] 44.14 50.67 95.53 81.08 92.76 85.08 70.37 91.84 92.05 78.08
Standard ImageNet 38.69 44.63 81.31 60.14 90.12 82.78 70.09 91.90 91.83 72.32
MDN + ITT L:add 46.08 57.19 87.67 70.11 91.78 82.06 69.52 89.43 85.93 75.53

L:cat 47.40 56.74 87.80 70.87 92.61 82.84 72.71 90.8 86.52 76.48
+Sty 52.30 61.10 90.51 73.16 93.28 83.43 71.86 91.07 88.38 78.34

TABLE 13
Multi-source DA (MST→TA) on DomainNet with ResNet-101. IN-O,
IN-A, IN-P indicate ImNet-O, ImNet-A, ImNet-P respectively.

Method B �C �I �P �Q �R �S Avg.

MDAN [11] IN-O 52.4 21.3 46.9 8.6 54.9 46.5 38.4
DCTN [33] IN-O 48.6 23.5 48.8 7.2 53.5 47.3 38.2
M3SDA [32] IN-O 58.6 26.0 52.3 6.3 62.7 49.5 42.6
MDDA [106] IN-O 59.4 23.8 53.2 12.5 61.8 48.6 43.2
MIMFTL [92] IN-O 67.2 25.0 54.4 13.4 67.0 54.1 46.8
WAMDA [94] IN-O 59.3 21.8 52.1 9.5 65.0 47.7 42.6
LtC-MSDA [107] IN-O 63.1 28.7 56.1 16.3 66.1 53.8 47.4
CMSS [108] IN-O 64.2 28.0 53.6 16.0 63.4 53.8 46.5
SImpAl [97] IN-O 66.4 26.5 56.6 18.9 68.0 55.5 48.6
PFSA [109] IN-O 64.5 29.2 57.6 17.2 67.2 55.1 48.5
KD3A [110] IN-O 72.5 23.4 60.9 16.4 72.7 60.6 51.1
DECISION [93] IN-O 61.5 21.6 54.6 18.9 67.5 51.0 45.9
T-SVDNet [111] IN-O 66.1 25.0 54.3 16.5 65.4 54.6 47.0
STEM [112] IN-O 72.0 28.2 61.5 25.7 72.6 60.2 53.4
RADA [89] IN-O 66.9 26.1 54.6 18.9 63.9 54.6 47.5
CMSDA [99] IN-O 70.9 26.6 57.6 21.3 68.1 59.5 50.5
NEL [113] IN-O 68.3 22.1 54.7 22.8 67.3 57.1 48.7
MUST [114] IN-O 60.8 20.5 48.2 12.2 65.1 49.8 42.8
DRT [64] IN-O 71.0 31.6 61.0 12.3 71.4 60.7 51.3
DRT [64] IN-A 71.1 30.6 61.3 12.6 72.1 61.1 52.0
Ours (conf) IN-A 67.3 22.4 55.3 12.4 66.6 57.8 47.0
(MST�TA) (mhu) IN-A 71.2 32.4 60.5 20.1 73.4 61.5 53.2
DRT [64] IN-P 71.3 32.6 61.3 12.9 71.5 61.0 52.2
Ours (conf) IN-P 67.7 22.6 55.9 14.3 68.6 58.0 47.9
(MST�TA) (mhu) IN-P 71.5 33.1 61.7 22.1 73.0 62.1 53.9

diversity, class granularity, size, etc. Different transfer strate-
gies are characterized by the aggregation operator L (addition
(add) or concatenation (cat)) and input stylization (w/oSty vs.
w/Sty). ITT(w/oSty+L:add) delivers similar performance
to ITT(w/oSty+L:cat) despite being computationally much
cheaper. With the slightly higher computational cost of stylization,
ITT(w/Sty+L:cat) outperforms the other variants affirming
the utility of domain-specific heads.
b) Extensibility to domain-shifts (DG). We report the DG results
for DomainNet, PACS and Office-Home in Tables 6, 11 and 7 re-
spectively. The evaluation scores for competing methods are taken
from [70], [74]. The model trained with and without instance-
level affinities are denoted as MST(w/ aff) and MST(w/o
aff) respectively. MDN generalizes on new domains significantly
better than the competing methods. The effects of learning good
representations at vendor-side are visible on target domains like
sketch, painting and clipart which benefit from MDN initialization
from the broad spectrum of ImageNet variants. Table 11 shows
our low variance across 3 random seeds, highlighting the statistical
significance of the improvements.
c) Extensibility to domain-shifts (SSDA). Following [32], we
report the single best accuracy in Table 10 and Table 8 for Do-
mainNet and Office-31 respectively, using the source domain that
results in the best post-adaptation accuracy. SST(w/oSty) and
SST(w/Sty) denotes models before adaptation, with stylization

as an ablation. SST�TA(conf) and SST�TA(mhu) denote
post-adaptation models utilizing confidence (conf) and multi-
head-unanimity (mhu). Before adaptation, our variants outper-
form the Source-Only baseline, which is a ResNet-101 model
simply trained on the source domain. Incorporating stylization
demonstrates the advantages of exploiting domain specificity. Post
adaptation, using the unanimity criterion yields better results.
d) Extensibility to domain-shifts (MSDA). We adapt the DG
trained models using the unanimity criterion (i.e. MST�TA(mhu))
and report the post-adaptation accuracy in Table 13 and 9. Inter-
estingly, pre-adaptation performance of MDN (last row in Table 6)
is comparable to the state-of-the-art MSDA methods and even
outperforms the results for some domains. The performance is
further improved post adaptation, outperforming all competing
methods. The unanimity criterion performs better than confidence
thresholding, similar to SSDA. Low variance (Table 9) across 3
random seeds highlights the statistical significance of our gains.

5 CONCLUSION

We present a deployable multi-domain paradigm to simultane-
ously address a wide range of inductive and transductive transfer
learning problems. Our unique effort to encourage head-specificity
enabled us to retain a superior balance between domain-generic
and domain-specific representations. For future work, we plan
to investigate the effectiveness of such frameworks for continual
learning in presence of diverse task and domain shifts.
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